
fi.. *

NASA Technical Paper 1006

NASA
TP
1006
c.1

Theodore E. Fessler and William F. Ford

OCTOBER 1977
\

-

NASA Technical Paper 1006

User’s Guide for SFTRAN/360

Theodore E. Fessler and William F. Ford

Lewis Research Center
Cleveland, Ohio

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

TECH LIBRARY KAFB, NM

0234306

1977

USER'S GUIDE FOR SFTRAN/360

by Theodore E . Fessler and William F. Ford

Lewis Research Center

SUMMARY

Extensions and improvc Tents have been made to SFTRAN, a structured-
programming language. This improved language has been implemented as a pre-
compiler that translates from SFTRAN to FORTRAN and has been available to users
of the Lewis Research Center's IBM 360/67 Time-sharing System for the past year.
This report describes the SFTRAN language and its use.

Time-sharing System (TSS) command procedures have been implemented that
eliminate the complications of dealing with extra files and processing steps which
the use of a precompiler would otherwise require. These command procedures
are described and their use is illustrated by examples.

INTRODUCTION

In recent years, two new programming concepts have received a good deal of

attention in the literature. The first of these may be loosely termed "GO-TO-less
programming, '' although a more appropriate description might be "avoidance of
numbered statements . I t When this concept is employed, program flow is controlled
by constructs, or structures, that imply a certain flow-chart function; the name
given each construct is selected to be suggestive of its function. A principal benefit
of GO-TO-less programming is that the resulting code is easier to read, both because
the structure names are more meaningful than numbers and also because the reader's
eye is not forced to leap around on the page or from one page to another.

-

The second concept involves what has been referred to as "stepwise refinement ,?'

the process of successively refining one's description of the solution method in
terms of ever more primitive components or processes. At each level of refinement,
only enough detail is presented to make the method clear. Anything of a complicated

nature is merely referred to, with its precise definition postponed until later. Some-
times called top-down programming, this technique is another that results in an
easier-to-read code. Only a few ideas need be kept in mind at each level of des-
cription; and the big , important ones can be put f irst , at the top, where they belong.

The combination of these two principles, GO-TO-less programming and stepwise
refinement , results in what we will denote as "structured programming. The
combined technique has more to offer, however , than merely good readability. It
also provides a natural sequence of steps to be taken in the programming process:
it replaces much of the art - of programming with a methodology that is easy for the
novice to learn and very efficient in the hands of the experienced. Also, a high
degree of program modularity is obtained , which means that the code produced can
easily be changed, extended , or adapted for other uses.

This report concerns a new implementation of the programming language SFTRAN,
which was created by John T . Flynnl for the specific purpose of providing a
language suitable for structured programming. Flynn's implementation of his

SFTRAN language was a precompiler that translated from SFTRAN to FORTRAN.
This permitted a great degree of simplification in the precompiler program; it
only had to recognize the few special structures that control program flow. Also,
by translating to FORTRAN, the benefits of program portability were automatically
obtained.

Our work retains all of Flynn's original structures. The new SFTRAN precompiler
differs from Flynn's in that it has been given additional language features, had
some operating limitations removed , and has been designed to run more efficiently.
This report describes the SFTRAN language and its use, as newly implemented.

Our effort, however , goes beyond refinement of an existing precompiler. We
extend the concepts of modularity and top-down development to the area of task
management and provide a set of command-level procedures for this purpose. Thus ,
the programmer is able to select one of several jobs, and one of several parts of
that job, and to invoke one of several operations to be performed on that part.
This can all be done by means of simple, brief statements designed expressly for
the purpose. The programmer is thus freed of concern for bothersome details

lSFTRAN User Guide, JPL Interoffice Computing Memorandum 337 (Section 9141,

July 31, 1973.

2

I

of an operational nature and can instead concentrate his attention on those areas
where his skill and effort are of maximum benefit. These task-management pro-
cedures, as implemented on the Lewis Research Center's TSS/360 computer system,
are described in this report and examples of their use are included.

SFTRAN LANGUAGE

In brief, SFTRAN (Structured FORTRAN) is a programming language with the
following features:

(1) It eliminates the burden of dealing with statement numbers. Program sections
are referred to by name, not number.

(2) It allows and even encourages the grouping of instructions into small, natural
units within a program or subprogram. These units can be given unique, descriptive
names and are displayed in listings in a manner that makes their internal structure
immediately apparent to the eye.

(3) It looks very much like ordinary FORTRAN, except for the manner in which
branching and looping are handled.
The SFTRAN language is implemented by a precompiler that generates F0,RTRAN
source code from SFTRAN source code. SFTRAN programs can therefore be con-
sidered machine independent to the same degree that their FORTRAN translations
are machine independent.

The basic structures by means of which SFTRAN avoids the GO-TO or implied
GO-TO statements of FORTRAN are the following:

(1) DO-PROCEDURE

(2) IF-THEN
(3) IF-THEN-ELSE
(4) DO-CASE
(5) DO-FOR
(6) DO-UNTIL
(7) DO-WHILE

(8) DO-WITH
The first structure refers to the PROCEDURE, a group of statements of any kind to
which a unique name is given. (This name may and should be descriptive, of
arbitrary length, with embedded blanks, special symbols, etc . , if desired, and is

3

the only - means by which the group of statements may be invoked. The PROCEDURE

thus operates very much like a baby subroutine within the program body, except
that it can refer to any of the variables of the program.) The remaining seven
structures provide commonly required types of program control, in which some
sort of decisionmaking is performed.

One feature of the SFTRAN precompiler is the option to automatically assign
statement numbers to normal SFTRAN output, flagging the various SFTRAN state-
ments. Also, statement numbers that were supplied by the programmer in order
to flag normal FORTRAN statements can be stripped off by the precompiler or left
intact, as desired. (These statement numbers make it possible to do debugging
directly from the SFTRAN code; the FORTRAN code produced by the precompiler
is unsuitable for this, because it is hard to read .) Later on, when the programs
are in good shape and clean text is desired, the SFTRAN precompiler can be invoked
again, with these options reversed, to produce the final listings.

Programming in SFTRAN

Any group of statements and structures, providing it has only one entrance and
one exit, can be designated as a single structural entity. This is accomplished in
SFTRAN by means of the PROCEDURE declaration, which assigns a unique, des-
criptive name to the entity. At any point or points within the program, this entity
can be invoked and executed by using the DO-PROCEDURE statement. The process
of creating arbitrarily complex code, therefore, becomes one of organizing an
appropriate assembly of concepts whose functions are indicated by their names but
whose precise definition is deferred until the necessary level of detail is reached.

In those regions of a program where the flow of commands is not purely se-
quential, some sort of transfer is required. The transfer may be lateral, as when
one of several alternatives must be selected and performed; or it may be backward,
as when a block of instructions must be repeated a number of times. These cases
are termed branching and looping, respectively.

The simplest form of branching involves only one block of instructions and the
decision whether or not to perform it . In SFTRAN this is accomplished by means
of the structure IF-THEN . When there are two - alternatives, the modification IF-

THEN-ELSE may be used. For more than two alternatives, a different form of
structure, the DO-CASE , is available.

4

The simplest form of looping involves repetition of a block of instructions a
certain number of times while an index is incremented. In SFTRAN this is
accomplished by means of the structure DO-FOR. In more general cases the block
must be repeated until a certain condition is attained or while a certain condition
holds; these are implemented by the DO-UNTIL and the DO-WHILE structures
respectively. Still more general cases are treated with the DO-WITH structure
in which the condition test (either UNTIL or WHILE) may be placed anywhere within
the block to be repeated.

Once the branching and looping structures have been defined any program,
no matter how complex can be reduced to a set of simple structures each of which
has only one entrance and one exit. A s such the structures are comparable to the
simple statements forming sequential code.

Basic Structures

Each SFTRAN structure is delimited by a keyword statement that marks its
beginning and an END statement that marks its completion; other keyword statements
may occur between these two. The keyword statements and the END statement form
the skeleton of the structure.

The remaining statements comprise the body of the structure and may be chosen
freely by the programmer. For clarity, the body of a structure is indented in the
output listing @ut not - the source) relative to the skeleton of that structure. (This
principle continues to hold even when one structure forms part of the body of

another structure.)
DO-PROCEDURE . - Any set of sequential statements and structures providing

it has only one entrance and one exit may be designated as a single structural
entity called a PROCEDURE. Its beginning is indicated by a keyword PROCEDURE

statement, and its finish by an END statement. The keyword statement also contains
the name assigned to the PROCEDURE - a string of characters contained within
parentheses. An example of such a structure is

PROCEDURE (VECTOF PRODUCT: A (1) = B (I) X C (I))
A (1 , I) = E (2 , I) * C (3 , I) - B (3 , I) * C (2 , 1)
A(2,I)=B(3,I)*C(l,I)-B(1,I)*C(3,1)
A (3 , I) = E (1 ,I) *C (2, I) - B (2,I) *C (1, I)

END

5

In this example the PROCEDURE name is chosen to be as descriptive as possible.
The name may be any length; all characters including blanks are .significant. But
PROCEDURE names should not contain apostrophes or unmatched (left with right)
parentheses.

Loosely speaking, a PROCEDURE may be regarded as a subprogram, internal
to the program or subprogram in which it appears. It is called from another point
in the same program by a DO-PROCEDURE statement; for the preceding example,

e

e

DO (VECTOE PRODUCT: A (I) = B(1) X C (I))

0

There are a few simple rules governing the use of PROCEDURES. To begin with,
the keyword PROCEDURE statement must stand alone; it cannot be defined within
another structure. It must have no means of entry except for calls by DO-PROCEDURE

statements; these DO statements are only effective within the program or subprogram
in which the PROCEDURE is defined.

The name in a PROCEDURE call must be exactly the same as the name in the
PROCEDURE definition. For this reason, a PROCEDURE name may appear in only
one keyword PROCEDURE statement; it may appear more than once in DO-PROCEDURE

calls, but it must appear at least once. Finally, although the body of a PROCEDURE

may be made up of other SFTRAN statements and structures, including calls to
other PROCEDURES, it may not call itself either directly or indirectly; PROCEDURES
do not have recursive capability. The SFTRAN precompiler does not check this;
it is the programmer's responsibility to ensure that recursive calls will not occur.

IF-THEN. - The simplest form of branching is the IF-THEN structure, whose
flow diagram is

6

An example of IF-THEN coding is

0

0

0

IF (.NOT. FOUND) THEN
DO (REPORT MISSING I T E M)
STOF

END
0

e
0

(Of the two statements forming the body of the IF-THEN structure, the first is an
SFTRAN-type statement and the second is a FORTRAN-type statement .) An abbre-
viation of this structure is possible whenever only one statement is contained in the
conditional block. For example, instead of

7

IF (,NOT, FCUND) THEN
DO (REPORT MISSING ITEM)

E N D

the abbreviation

0

IF (. N C T . F C U N D) DO (R E P O R T MISSING ITEM)

0

may be used. Note that THEN and END are omitted in the abbreviated version, an
exception to the general rule that every structure begins with a keyword and ends
with an END statement.

IF-THEN-ELSE. - When branching involves two - alternatives, the structure IF-

THEN-ELSE may be used. Its flow diagram is

. FALSE. I . TRUE.
- . - LOGIC = ? - -

a

1

I
Statements to be
executed on ly i f
logical expression
is .FALSE.

t

Statements to be
executed only if
logical expression
is .TRUE.

8

An example of IF-THEN-ELSE coding is

0 . .
IF (1 . E Q . J) THEN

DO (I=J CASE)
CALL sua1 (X,Y,Z)

ELSE
DO (NOSMAL CASE)
CALL SUE2 (X,Y,Z)

EEL

The statements to be executed if LOGIC is .TRUE. come right after the IF-THEN key-
word statement; the statements to be executed if LOGIC is ,FALSE. come right after
the ELSE keyword statement. In either case, program flow then passes to the first
statement following the structure's END statement.

DO-CASE .-When branching involves more than two alternatives, the DO-CASE
structure may be used. Here the alternative to be chosen is determined by examining
an integer variable rather than a logical variable. The flow diagram of the DO-CASE
structure is

-0 ... statements to be
executed if N=1 I U executed if none

9

An example of DO-CASE coding is

D O C A S E (ITYPE,3)
C A S E 1

P O L P = A * X + B
C A S E 2

P O L Y = k * X * * % + B * X + C
C A S E 3

DO (NOT LINEAR OR Q U A E R A T I C)
I F N O N E

EO (EEPOFT TYPF E R R O E)
EKD

The case-choice and the case-limit appear in the keyword DO-CASE statement. The
definitions of each possible case form the body of the structure, separated by key-
word CASE N statements. A s usual, an END statement marks the completion of the
structure.

The case-choice must be a nonsubscripted integer variable; and the case-limit
must be a positive, literal, integer constant. The number of keyword CASE N

statements must be equal to the case-limit and they must be given in sequential
order, beginning with CASE 1. Each case definition follows its own keyword CASE

N statement; even if a definition is null, containing no statements, the keyword
CASE N is required.

If the case-choice is not within range of the number of cases defined (less than
1 or greater than the case-limit), control will pass to the next statement after the
END of the DO-CASE structure unless an IF NONE contingency case is provided.
If an IF NONE case is provided it must follow the last case in the structure.

DO-FOR. - The simplest form of looping involves repetition of a block of in-
structions a certain number of times, while an index is incremented. This is
accomplished by means of the DO-FOR structure, whose flow diagram is

10

-

Statements to be
executed repeatedly

I
Increment index

I w Done ?
f Yes

An example of DO-FOR coding is

0

0

0

DO FOE I=2,N,2

END
x (I) = Y (I) + z (I)

0

0

0

In this example, X (I) wi l l be calculated for all even values of I from 2 to N; then
control will pass to the next statement following the structure's END statement,
Initialization, incrementing, and testing are implied by the structure and are not
explicitly programmed.

-

11

The general form of the DO FOR statement is

DO FOE I=?il ,N2,N3

where I is the index and N1, N2, and N3 are the initial , terminal , and increment
parameters. The index of a DO-FOR must be an integer variable and may not be
redefined within the body of the DO-FOR structure. The SFTRAN precompiler does
not check this; it is the programmer's responsibility to ensure that such redefini-
tions do not occur.

The DO-FOR parameters determine the initial value, N1; the increment value,
N3; and the number of times , (N2-N1)/N3+1, that the body of the DO-FOR structure
will be executed. These parameters may be literal integer constants , integer
variables, or integer expressions. For instance, a complicated example would be

DO FOR INDEX = 0, I F U N C (X) + J * K , - N U R

Variables appearing in N1 N2 , or N3 may be changed during execution of the state-
ments contained within the DO-FOR structure with no effect; only their values at
the start are used to control indexing. If N3 is omitted its value is assumed to be
1 (unless N1 and N2 are literal constants and the value of N1 is greater than that
of N2, in which case N3 is assumed to be 1).

Recapitulating, the DO-FOR structure is executed as follows:
(1) The index is initialized to the value of N1.

(2) The values of N2 and N3 are saved.

(3) The statements contained in the body of the DO-FOR structure are executed.
(4) The index is increased by the value of N 3 .

(5) If N3*(N2-1) is negative, the DO-FOR is completed. Otherwise, steps 3 , 4 ,

and 5 are repeated.

12

When a DO-FOR structure is completed normally @y step 5 above), the value of
the index is not - the same as it was during execution of the body of the structure (in

step 3) the last time.
DO-WHILE and DO-UNTIL . - In more general cases of looping, the block of state-

ments must be repeated until a certain condition is attained, or while a certain
condition holds. In SFTRAN these are accomplished by means of .the DO-UNTIL and
DO-WHILE structures, respectively. Their flow diagrams are

DO WHILE:

1
Statements to be
executed if not
done yet 1 Statements to be
executed if not
done yet

I

DO UNTIL:

I f
(:e

/

Statements to be
executed before
making test

13

An example of DO-WHILE coding is

0

0

0

DO WHILE (N. GT.0)
fi0 (P E O C E S S N-TH ITEM I N L I S T)
K= N - 1

EN c
0

0

0

(In a DO-WHILE the logic test is made at the start, to determine if conditions for
looping are allowed. Hence , if N should be 0 at the start, control will pass
immediately to the statement following the structure's END statement .>

An example of DO-UNTIL coding is

0

0

0

VkLUE=GUESS
DO U N T I L (TEF.M.LE. SMALL)

DO (CALCULATE: HIGHER-CRDER TERM)
VBLUE=VALUZ+TERM

END
0

0

0

(In a DO-UNTIL the logic test is made at the end , to determine if looping is to con-
tinue. Hence, TERM y the first correction to GUESS y will be calculated and added
before being examined to see whether it is SMALL enough to discontinue looping.)
Note that it is quite possible to program an infinite loop , in which the completion
test is never satisfied. The SFTRAN precompiler cannot check this. It is the
programmer's responsibility to avoid infinite loops.

DO-WITH . - In more general cases of looping it is desirable to have the com-

pletion test take place other than at the start or the end of the loop. For these cases
the DO-WITH structure is available, whose flow diagram is

14

I

Statements to be Additional statements
executed before to be executed i f not
test for completion done yet

v No

"
I I

I

An example of DO-WITH coding is

0

ITEM=l
DO WITH

UNTIL (MATCH.OP.ITEM. EQ-LAST)
DC (CHECK FOR M A T C H WITH S T A N D A R D VALUE)

DO (PROCESS N O N - M A T C H I N G ITEM)
ITEM=ITEM+l

END
IF (.NOT.MATCH) DO (R E P O R T M I S S I N G ITEM)

0

0

0

15

In this case, the DO-WITH completion test is indicated by the keyword UNTIL
statement. A WHILE statement could also have been used. For the UNTIL test,
a .TRUE. value signals completion of the looping. For the WHILE test, a .FALSE.
value signals completion. In either case, one and only one WHILE/UNTIL statement
may be used in the DO-WITH structure, but it may be placed anywhere within the
body of the structure.

Additional Forms

The basic structures just defined are more than adequate to describe even the
most complex program flow. But, because of its FORTRAN origin, SFTRAN has been
given three additional forms: READ and WRITE parameters, EXITS from a DO-FOR,

and INCLUDE and DEFINITION.
READ and WRITE parameters. - READ and WRITE statements in SFTRAN may

contain END and/or ERR parameters, just as they do in FORTRAN. In SFTRAN,
however, these parameters set logical variables instead of causing control transfers.
For example, the statement

FEAC (UNIT,FMT,DONE=END) L I S T

will read into LIST from UNIT according to the format specified in FMT . If an end-
of-file is encountered, the logical variable DONE will be set to .TRUE.; otherwise,
DONE will be set to .FALSE. The following example is part of a main program that
makes use of this feature:

0

0

e

D O WITH

U N T I L (DONE)
R E A D (5 , 1 0 C , , D O N E = E N D) DATA

DO (PROCESS ALL DATA IN T H I S G R O U P)
PO (PRINT EESULTS OF PROCESSING)

ENC
STCP

e
e
0

16

To illustrate the use of the ERR parameter suppose that the READ statement in this
example is replaced by

R E A D (5, l C C , DONE=END, SCFEWY=EFE) DBTP.
I F (SCFEWY) THEN

K I N C = 4
D O (E R f r C R HAMDLING FCUTINE)

END

The program will operate just as before, unless an error is encountered at READ

time. In that event SCREWY will be set to .TRUE. and then the procedure ERROR

HANDLING ROUTINE will be invoked for KIND=4. (If no READ error is encountered
SCREWY will be set to .FALSE .)

EXITS from a DO-FOR . - It has been stated that every SFTRAN structure has
only one entrance and one exit. Like most generalities this admits of an exception:
the EXIT statement. The EXIT statement which may be used only in connection
with a DO-FOR structure has been added to give that structure the feature of
having a completion test within the body of the structure. In this respect it is
similar to the UNTIL or WHILE statements of the DO-WITH structure. For instance
the statement

I F (E Q U A L) E X I T

in a DO-FOR structure is roughly analogous to the statement

U N T I L (E C U A L)

in a DO-WITH structure. The EXIT statement however possesses a feature that
makes it much more powerful than UNTIL/WHILE statements; it can optionally include
the name of a DO-FOR structure index in parentheses, to cause EXIT from that
DO-FOR structure. In this respect it furnishes a means of unconditional transfer
out of a nest " of structures. Consider for example the following SFTRAN code:

17

e
0

e

D O FOR I T E H = l , L A S T

DO FOR K I N D = 7 , 5
DO (GET DATA ITEM A N D ALL 5 STANDARD VALUES)

EO (CHECK FOR MATCH WITH T H I S K I N D OF STANDARD)
I F (MATCH) THEN

DC (PROCESS MATCHING CASE) <-"" E X I T (K I N D)
END
DO (PROCESS NON-MATCHING CASE)

END
END

e
0

e

When a MATCH is found, it is processed and then control is transferred out of the

IF-THEN structure to the first statement following the END statement of the DO-FOR
structure with index name KIND. For clarity, this is indicated in the output listing

(but not - the source) by a left-going arrow. (The alternative structure

I F (MATCH) THEN
DO (PROCESS HATCHING C A S E)

<""- E X I T (KIND)
E L S E

END
DO (PPOCESS NON-MATCHING CASE')

is nominally correct, but its ELSE block is clearly unnecessary. Consequently,
this form is not allowed, and the precompiler is programmed to regard it as an error.
See the section Comments .)

In any event, it is obvious that the EXIT statement will be associated with a test
of some sort. The question then arises, What about the possibility that no EXIT has
occurred by the time the loop is finished? Without a special provision, control would
pass to the next statement following the appropriate END statement - just as if an
EXIT had - occurred. To handle this situation, SFTRAN provides the keyword
OTHERWISE (again, to be used only in the DO-FOR structure). The flow diagram
for a DO-FOR with an EXIT and an OTHERWISE is

18

* Initialize index

t
Statements preceding
t h e EXIT test

I
Yes

- EX IT?

I

Statements following
t h e EXIT test

1
Increment index

I

Q- Done?

1

OTHERWISE:
Statements to be used
as default code

t

19

An example of DO-FOR coding with an EXIT and an OTHERWISE is

b

DO FCR K I N D = 1 , 5

< - - IF (HATCH) E X I T

OTHERWISE

E N D

DO (CHECK FOR HATCH WITH T H I S K I N D OF STANDARD)

DO (FROCESS NON-MATCHING CASE)

DO (FEPORT NO MATCH FOUNI;)

In this case, the procedure REPORT NO MATCH FOUND will be executed if the item
matches none of the standards; but normally a match will be found, and control will
be transferred out of the DO-FOR structure. (The optional, abbreviated version
of EXIT has been used that omits THEN and END, and the index name KIND has
been omitted because exit is from the immediate structure.)

INCLUDE and DEFINITION. - FORTRAN compilers require that certain classes
of statements appear in the program before certain other classes of statements. (For
example, function definition statements must appear before any executable state-
ments.) In SFTRAN , the INCLUDE statement provides a way to specify where a
block of statements, defined elsewhere in a DEFINITION structure, is to be located
in the FORTRAN output from the precompiler.

The INCLUDE statement allows the programmer to indicate the presence of a
group of statements without spelling them out. Thus, he can express main ideas
at the top of the program without the clutter of detail, best left until later. A s with
DO-PROCEDURE statements and PROCEDURE blocks, INCLUDE statements are related
to their corresponding DEFINITION blocks by a unique (hopefully descriptive) name.
An example of the INCLUDE statement is

20

0

0

8

INCLUDE (TYPE STATEMENTS, ETC.)

C.. ... M A I N FLOW:
DO (I N I T I A L I Z E PROGRAM)
DO WITH

UNTIL (DONE)
READ (S,INPUT,DONE=END)

DO (FIBST-ORDER CALCULATION)
0

0

0

Then, at another point in the program, perhaps at the bottom, would be

0

0

0

D E F I N X T I O N (T Y F E STATEMENTS, ETC.)
LOGICAL DONE

NAMELIST / INPUT/ X , Y , N X Y
REAL X (25) ,Y (25,)

E N C
0

8

0

In the FORTRAN output from the precompiler, the statements LOGICAL, REAL,
and NAMELIST will appear in place of the INCLUDE statement, and the DEFINITION
and END statements will not appear.

There are a few rules governing the use of INCLUDE and DEFINITION statements.
DEFINITION statements must stand alone; they cannot be contained in any other
structure. INCLUDE statements must not be contained in DEFINITION blocks (they
cannot be nested). The names of INCLUDE and DEFINITION statements should not
contain apostrophes or unmatched (left with right) parentheses. And names must
match exactly: each name must appear only twice, once in an INCLUDE statement
and once in a DEFINITION statement.

~ _ _

Comments

A s noted, the EXIT statement requires special attention because it can cause
unconditional transfer out of a structure (other than at its normal END). There are

21

also two common, allowable FORTRAN statements that possess this characteristic:
RETURN and STOP. The rules governing the use of EXIT, RETURN, and STOP
within structures ~~ " are as follows:

(1) They may be used in IF-statements .
(2) They may be used alone as the last - statement in an IF-THEN structure, an

OTHERWISE block of a DO-FOR structure, a CASE or IF NONE block of a DO-CASE

structure.
(3) No other use within structures is allowed.

Occasionally, errors in form or spelling may cause the SFTRAN precompiler to
pass over statements (thinking them to be FORTRAN) when the programmer had
intended them as SFTRAN. The FORTRAN compiler will, of course, complain about
these, and the programmer should then be able to determine what caused the pre-
compiler to ignore the statements in the first place.

Finally, SFTRAN does not - permit free-form coding. Columns 1 to 5 are reserved
for statement numbers (except in comment lines) and column 6 is reserved for
a continuation character. (Hyphens should not - be used to indicate that a statement
is continued on the following line.) Statement scanning begins in column 7; any
initial blanks will be regarded as relative indenting and will be preserved by the
precompiler. The SFTRAN precompiler uses only the first 72 columns of each line.
(However, this line-length standard may be altered by the user at precompilation
time, as described in the following section.)

TASKMANAGEMENTSYSTEM

For the following discussion, it will be helpful i f the reader has had an intro-
duction to the IBM 360/67 Time-sharing System (TSS) and also its Command
System User's Guide (CSUG) , reference 1. The command system procedures and
file organization described here supplement the commands that are a part of TSS;
they do not replace them. The task-management commands are summarized in
appendix A . These new commands provide the following features:

(1) They greatly simplify the management of several jobs under one USERID and
at the same time make it easy for several programmers to work as a team on one job.

(2) They provide all of the library functions essential in multijob, multiprogram-

mer environments without the need to assign this work to an individual.

22

I

(3) They make full use of and are fully compatible with, IBM's TSS facilities.
Only standard features of task and data management are required.

(4) They provide features that are equally available in either conversational
or batch modes.
It is recommended that partitioned data-set libraries be used for source code, for
object code, and for listings. The command procedures which assume this or-
ganization, are provided to simplify task management.

To illustrate the method, suppose that the assignment is to analyze sonic booms
and that the programmer has written a main program (MAIN) and two subroutines
(INPUT and OUTPUT) all in SFTRAN.

The first step is to put MAIN, INPUT, and OUTPUT into the source library,
a VP data set called (say) SOURCE .SONIC .BOOM (or any other name the programmer
likes). That is SOURCE. SONIC .BOOM is created with members MAIN, INPUT, and
OUTPUT. This organization will keep name conflicts to a minimum and also provides
an excellent filing scheme.

The next step is to make object members corresponding to MAIN INPUT and
OUTPUT. Suppose the programmer begins with MAIN, invoking the SFTRAN pre-
compiler. This would produce two new data sets y one for further processing and
one for listing purposes.

The first data set, called SOURCE .MAIN$ is the FORTRAN version of MAIN and
is ready for processing by the FORTRAN compiler. After compilation, the resulting
object code will be put into the object library, a VP data set called OBJECT .SONIC.

BOOM as member MAIN$. The $ sign is used to avoid conflicts that might arise if

an entry-point name is the same as the member name.
The second data set produced by the precompiler has been put into the listing

library, which is a VP data set called LISTINGS .SONIC .BOOM, as member MAIN.

The latter is an SFTRAN version of MAIN that has been indented to reveal how the
structures are nested. (In SFTRAN statement text is assumed to begin in column
7, except for comment statements. If leading blanks do occur beginning in column
7 , these will be preserved by the precompiler as additional indentation relative
to that showing structure nesting.)

Occasionally the need arises to save a FORTRAN source member for a particular
job. In the present case , for example, a Bessel function subroutine like BESORD

23

might be required and could be stored in SOURCE .SONIC .BOOM as member BESORD$.
Again, the $ sign on BESORD$ would identify it as a FORTRAN-language element.

Command Procedures

Twelve command procedures have been provided to assist in creating and
managing the SFTRAN job libraries:

JOB STOEE L I S T I N G S PR I N T L I B
SFTRAN E D I T L I B $STAMP E R A S E L I E
F O R T R A N R E D I T L I B $INCLUDE UNSTORE

(They have been grouped according to their functions: processing, editing, listing,
and miscellaneous .)

Task selection is accomplished by command procedure JOB; object members are
created either from SFTRAN-language source-library members , by using command
procedure SFTRAN , or from FORTRAN-language source-library members, by using
command procedure FORTRAN. Individual VI data sets may be stored in the source
library by using the command procedure STORE; source-library members may be
created or edited with command procedures EDITLIB or REDITLIB. Source-code list-
ings are obtained by command procedure LISTINGS; $STAMP (used only by command
procedures SFTRAN and FORTRAN) puts an identifying header on Source listings;

$INCLUDE (used only by command procedure LISTINGS) collects several source
listings into one data set for batch printing. Batch prints of original, unprocessed
source-library members may be obtained by command procedure PRINTLIB; when
a given program is no longer needed, source, object, and listing members are re-
moved from the libraries by command procedure ERASELIB; a VI data set copy of
any source-library member can be produced with command procedure UNSTORE .
In this section, examples are given to show how these commands can be used. A

summary of the commands and their operands is given in appendix A .

Job. - At the start of each task creation and management session , one normally -
issues a command such as

J C B SONIC. ECOM

24

This sets up DDEF's and DEFAULT'S so that subsequent commands refer to the cor-
rect VP data sets. (Later, if the command JOB? were entered, the response would
be SONIC .BOOM .) These data sets will be called SOURCE .NAME, OBJECT .NAME,

and LISTINGS .NAME, where NAME is the first parameter in the JOB command. (If
a different nomenclature is desired, such as NAME .SRC , NAME .OBJ , and
NAME .LST, the JOB command procedure should be suitably modified.) At the close
of a session, the JOB command may be issued without parameters to release the
DDEF's and to eliminate the DEFAULT values. This will return the user profile to
what it was just before the JOB command was first issued.

In addition to defining the various libraries, the JOB command may also be used
to establish standard operating procedures. For example, one might enter

J O B SONIC. ECOM, NUMBER=P,STRIF=Y,OFFLINE=Y

These additional operands require that (unless otherwise specified, when command
procedure SFTRAN is called),

(1) The various elements of SFTRAN structures be numbered on all SFTRAN
listings

(2) Programmer-supplied statement numbers be stripped from all SFTRAN listings
(3) Error messages and their line numbers go offline to the SFTRAN listings,

not to the terminal
(Normally, the internally generated statement numbers are not shown, programmer-
supplied statement numbers are not stripped, and error messages appear at the
terminal.)

Another version of the JOB command might be

J O B SONIC. BOOM, FOBTBAN=N,LISTING=Y,LINES=P

These additional operands require that (unless otherwise specified, when command
procedure SFTRAN or command procedure FORTRAN is called),

(1) FORTRAN source data sets created by the precompiler are not - to be compiled
(2) A listing of indented SFTRAN output (or a FORTRAN listing in the event that

\
command procedure F0RTRAN:is used) is - to be printed for each member
processed by the SFTRAN command procedure

25

(3) Line numbers are - to be included in listings
(Normally, the FORTRAN compiler will be called if no precompiler errors are de-
tected, SFTRAN output listings are not printed since they may not be the final
version desired, and listings are normally printed without line numbers .)

Any combination of these operands may be used when JOB is invoked. The
choices specified then hold for all subsequent processing during that terminal ses-
- sion, unless revoked by another JOB command (or temporarily overridden by a
particular SFTRAN or FORTRAN call).

SFTRAN. - The command procedure SFTRAN is used to process source members,
written in SFTRAN, that are stored in a particular source library. First each member
is precompiled, creating SFTRAN output for listing and a FORTRAN source data set;
then (depending on defaults) the SFTRAN output is printed and the FORTRAN source
data set is compiled.

Suppose, for example, that the JOB name is SONIC .BOOM, the JOB command has
been issued previously, and there are two members to process. These are stored
in the source library as members MAIN and SEARCH. Then, to begin processing,

enter

SFTRAN MAIN,SEARCH

If no precompiler errors or compiler errors are detected, an underscore will

eventually be received at the terminal. When it is , the following data sets will have
been created:

(1) LISTINGS .SONIC .BOOM (MAIN)

(2) LISTINGS .SONIC .BOOM (SEARCH)

(3) SOURCE .MAIN$

(4) SOURCE .SEARCH$

The first two are indented SFTRAN output produced by the precompiler and may
be printed using LISTINGS. The second two are FORTRAN source data sets (in
temporary storage, with DDEF's released) used by the FORTRAN compiler to create
object members MAIN$ and SEARCH$ in the object library.

If the precompiler detects errors, messages will appear at the terminal (unless
OFFLINE=Y is specified when the JOB or SFTRAN command is issued) and the
FORTRAN compiler will not be invoked. If the FORTRAN compiler detects errors,

26

messages will appear at the terminal inviting line corrections. It is possible to enter
corrections at this time, but it is better to avoid this (default after the # prompt,
enter N after MODIFICATIONS?) and to correct the SFTRAN code instead. Note
that, after an attention-out of command procedure SFTRAN, it is possible (but not
likely) that the default value of LIMEN will be left at X . This is undesirable, so
check it out.

A s was mentioned, the precompiler normally scans only the first 72 columns of
each line. This number is determined by the value of the keyword operand
$SFTRECL. For example, the command

will enable the precompiler to process XLONG, which may have lines of code ex-
tending out as far as column 100. (But this will reduce the allowable number of
continuation lines from 19 to 13 and may cause some long lines to be truncated in
indented listings.)

Other forms of the SFTRaN call are possible, such as

or

The keyword operands in these two examples have been discussed, and their use
here is to override (temporarily) the choice made with the JOB command.

FORTRAN. - The command procedure FORTRAN is used to compile members,
written in FORTRAN, that are stored in a particular source library. Such members
may have already been precompiled and saved (unlikely), or they may be special
programs not intended for the precompiler (e. g . , obtained elsewhere in FORTRAN

.I
Consider, for example, the FORTRAN subroutine BESORD . This would probably

be stored in the source library as member BESORD$, with the $ suffix indicating
that it is written in FORTRAN and is not suitable for the precompiler. (Actually,

27

the precompiler would simply output each line of BESORD$ as it received it , without
modification.) Then , assuming that the JOB command has been previously issued,
one enters

F C R ' I R A B EESCRD$

After the underscore is received, the member BESORD$ will exist in the object
library , and in LISTINGS .SONIC .BOOM for later listings if desired.

The command procedure FORTRAN also has the operand keywords LISTING and
LINES , which may be used to override (temporarily) the choice made with the JOB

command.
STORE. - The command procedure STORE is used to load individual VI data sets

into a particular source library. These data sets may be read in from cards , ob-
tained from another source library by means of command procedure UNSTORE , or
copied or shared from another user. The only requirement is that each data set
be cataloged in the form SOURCE .NAME , where NAME is a valid source-library
member name.

Suppose , for example , that there is a VI source data set , written in SFTRAN,
for subroutine SEARCH. Then , assuming that the dataset is cataloged as
SOURCE .SEARCH (this would be done automatically by UNSTORE) and that the JOB

command has been issued, enter

STOFE S E A R C H

The result is that the VI data set SOURCE .SEARCH is erased , (ur.less the command
had been STORE SEARCH,ERASE=N) and the member SEARCH now exists in the
source library. If a previous version of SEARCH had been stored , that version is
replaced by the new one.

EDITLIB. - The command procedure EDITLIB is used to create or edit a member
of a particular source library , using the TSS editor. Suppose the member name
is , or is to be, SEARCH; then, assuming the JOB command has been issued , enter

28

The usual prompts and messages from the TSS editor will appear, and editing may
be discontinued by entering END or END, as appropriate. -

REDITLIB. - The command procedure REDITLIB is used to create or edit a mem-
ber of a particular source library, using the research editor (REDIT). Suppose
the member name is, or is to be, SEARCH; then, assuming the JOB command has
been issued, enter

REDITLIB SEARCH

to begin editing of member SEARCH. (For convenience, REDITLIB uses the param-
eter $OPTIONS to set the initial state of REDIT. The default string furnished for
$OPTIONS is 'TABSET 7; TRUNC 72; BRIEF N ,F; VERIFY C , I ,M , P I - you will be
able to tab to column 7 , lines longer that 72 characters will be truncated, and REDIT
will not print line numbers or require a file name when the file command is issued,
but it will furnish prompting clicks and informational and error messages and
automatically print lines located or changed. If this mode is unfamiliar or seems
awkward, the user may set his own default value for $OPTIONS .) When editing is
completed, the command

R E K E Y : FILE: PAUSE (or QUIT)

will return you to TSS .
LISTINGS. - The command procedure LISTINGS is used to obtain listings of

indented SFTRAN code produced by the precompiler. It assumes that the member
already exists in the listing library. (If this is not the case, perhaps because of
an error in typing the member name, unintelligible messages will be issued. If this
occurs, press the attention key and issue PAUSE or QUIT to leave REDIT .) Suppose
that SFTRAN listings of MAIN and SEARCH are desired; then, assuming the JOB

command has been issued, enter

"

L I S T I N G S ?!AIM, SZAIICH

This will create a VS data set, flagged for batch printing, named SONIC .BOOM.

PROGRAMS (in temporary storage with DDEF released). This single data set will

29

contain copies of both the MAIN and SEARCH modules, with identifying headings that
will appear on each printed page; one print request will have been issued. A s
another example, the command

L I S T I N G S OUTPUT,EESORD$,LIBES=Y

will produce a listing of the SFTRAN-language module OUTPUT and the FORTRAN-
language module BESORD$, with line numbers. (Member OUTPUT in LISTINGS.
SONIC .BOOM was created by command procedure SFTRAN; member BESORD$ was
created by command procedure FORTRAN. 1

Command procedure LISTINGS can also use, as an alternative operand, a list of
member names that has been stored in the source library as member NAMELIST.
For example, suppose the list

'I .? I Y
s E A E C F
OrJT?I1?'
B E S O F i D 3

is stored in SOURCE .SONIC .I3001\/1 (NAMELIST) . Then, at the close of a session
during which several program changes were made, the command

could be used to obtain a fresh composite listing of these four modules, in the order

given.
$STAMP. - The command procedure $STAMP is used only by command procedures

SFTRAN and FORTRAN. Its function is to put identifying (paginating) headings on
the members of the listing library at the time they are created.

$INCLUDE. - The command procedure $INCLUDE is used only by command pro-
cedure LISTINGS. Its function is to concatenate several members of the listing
library data set into one data set for batch printing.

PRINTLIB. - The command procedure PRINTLIB is used to obtain batch prints
of source library members. Generally, these will be original (nonindented) SFTRAN
codes, certain FORTRAN source codes that have been stored, or documentation
describing the job and the programs. For example, assuming that the JOB command
has been issued, enter

30

PRINTZTE MAIN,EESORD$,SYSCOC

to obtain batch prints of MAIN , BESORD$, and program documentation SYSDOC .
ERASELIB. - The command procedure ERASELIB is used to remove a member

that is no longer wanted from the source, object and listing libraries of a partic-
ular job. For example assuming that the JOB command has been issued , enter

L F A S E L I B SEARCH,INPUT

to remove source members SEARCH and INPUT from the source library, object
members SEARCH$ and INPUT$ from the object library, and listings SEARCH and
INPUT from the listing library.

UNSTORE . - The command procedure UNSTORE is used to create individual VI
data set copies, with the prefix SOURCE., of members of a particular source li-
brary. (Normally, it is used only by the other command procedures, but it will be
found convenient should a source member from one job be needed by another job .)
For instance, i f the source library contains members SEARCH and BESORD$, and
the JOB command has been issued , one could enter

UNS'IOBE SEARCH, E E S O R D $

to create the VI data sets SOURCE. SEARCH and SOURCE .BESORD$. (The original
members are still in the source library. Also, the unstored copies are in temporary
storage only.)

Comments Concerning Task Management

A few final comments about the command procedures may be useful. Most of them
can be used recursively; that is up to 1 0 member names may be entered, in addition
to the keyword operands. Those that cannot are JOB (which takes no member name
operand) and EDITLIB , REDITLIB, and $STAMP (for which recursion would be of
doubtful value).

One of the advantages of source libraries is that naturally occurring names such
as MAIN, INPUT , OUTPUT, SEARCH, etc . may be used for different jobs without
conflict. There are two precautions that should be taken however. The first is to

31

avoid having a member name that is identical to the job name: a source library named
SOURCE .FLOW , for instance, will eventually cause problems if it contains a member
named FLOW. (If identical names are really desirable, the conflict may be avoided
by suitably modifying command procedure JOB .)

The second precaution is to use member names containing not more than six
characters. No difficulty arises if member names are identical to entry-point names,
because the FORTRAN object members produced will have a $ sign suffix. However ,
if more than six character are used, problems may arise because the FORTRAN
compiler truncates member names to six characters, then adds two of its own to
produce CSECT and PSECT names.

ACQUIRING SFTRAN

The SFTRAN precompiler object program , the task-management PROCDEF's ,
documentation instructions , and some DEFAULT values suitable for the SFTRAN
environment are all contained in a partitioned data set named SFTRAN .LIB. On the
Lewis Research Center's IBM 360/67 system, this data set is owned by SYSUTY and
read-only access has been permitted all users.

To acquire SFTRAN capability, the user should issue the commands

SHARE SFTRAN,SYSUTY,SFTRAN.LIE
PEOCTFAN SFTRAN (0) ,GOTCHA
GOTCHA

The result will be that USERLIB , the data set that controls the user's operating en-
vironment , will have added to its PROCDEF library the JOB command and also will
have PROFILEd in its DEFAULT table a value for SFTRANID , the version number of
the SFTRAN precompiler in effect at the time. (The user may wish to acquire SFTRAN
immediately after LOGON so as to avoid having other, undesired default values
profiled.)

Other things happen , too when GOTCHA is executed. If USERLIB contains any
PROCDEF's with the same name as one of the SFTRAN task-management PROCDEF's,
these are excised. A batch printing of this USER'S GUIDE is ordered unless
PRINTDOGN is specified when the GOTCHA command is issued. Then, the entry

32

I

SFTRAN is deleted from the user's data set catalog and the PROCDEF GOTCHA is
excised from USERLIB.

A brief runstream with a simple SFTRAN program is provided in appendix B

to help new users get started. Listings of a larger SFTRAN program are provided'
in appendix C to illustrate good use of the language features.

PROCDEF's

~ l l of the PROCDEF's for the SFTRAN command procedures , except PROCDEF
JOB, are contained in member SYSPRO of SFTRAN .LIB , owned by SYSUTY.
PROCDEF GOTCHA is also located there. A printer listing of the PROCDEF's may be

obtained by doing:

SHAEL SFTRA??, CYSYTY, SFTP?.?!. LIE
DDEF PROCDEFS,VI,PROCDEFS
CDS SFTRAN (SYSPRO) ,PROCDEFS; DELETE SFTRAN
PRINT PROCCEFS, ERASE=Y

When a user acquires SFTRAN capability, execution of the command procedure
GOTCHA builds PROCDEF JOB in the user's USERLIB. This is the only SFTRAN

procedure definition that the user owns. He may wish to do some personal tailoring
of his SFTRAN environment by altering or adding to PROCDEF JOB. For example, he
may wish to change the file-naming conventions assumed in PROCDEF JOB.

In PROCDEF JOB, a LIBDEF command gives the user access to the SFTRAN pre-
compiler without requiring an entry for SFTRAN .LIB in the user's catalog and with-
out having a new program library added at the top of the JOBLIB stack. The
PUSHPRO and MERGEPRO commands add to the user's profile environment all of the
other SFTRAN task-management commands and provide default values appropriate
to the SFTRAN environment should they not be found in the user's USERLIB. When
the JOB command is issued without a parameter name, POPPRO commands cause
the user's profile to revert back to what it was immediately before the first issuance
of the JOB command.

The user's default value for SFTRANID is checked each time the precompiler is
loaded by the JOB command. If the default value and the current-precompiler value
do not match, the user is notified immediately that a change has been made in the
system.

33

SFTRAN PRECOMPILER

The precompiler translates SFTRAN source code to FORTRAN source code. It
was written in SFTRAN and consists of a main program, a BLOCK DATA subprogram,
and seven other subprograms (excluding system-supplied routines). Communication
between these is partly by calling arguments and partly by the two common blocks
SFTSET and SFTCOM .

Precompiler Main Program

All parameters that control the operation of the precompiler are contained in the
common block SFTSET . These are set at the start of each precompilation by the
command procedure SFTRAN. (On TSS/360 these quantities are set directly by the
program control system (PCS) .)

Statement analysis and translation are performed in two passes in the main pro-

gram, In pass 1, SFTRAN statements in the user's program are recognized and
translated to FORTRAN statements. The precompiler is transparent to non-SFTRAN
statements and these pass through without change. If errors are detected, they
are reported along with the offending SFTRAN statement. Syntax errors are rarely
fatal; pass 1 is nearly always completed. An indented listing of the user's SFTRAN
program is also produced in pass 1.

A feature of SFTRAN is the use of descriptive names to refer to a block of state-
ments. At the conclusion of pass 1, a check is made to see that the name of each
PROCEDURE block was used at least once in a DO-PROCEDURE statement, and con-
versely. Also, a check-is made to see that the name of each DEFINITION block was
used in an INCLUDE statement, and conversely. Then, i f no errors have been de-
tected up to this point, pass 2 begins.

Pass 2 operates on the translated, all-FORTRAN output from pass 1. Two files
are read by pass 2: one contains the bulk of the pass 1 translation, and the other
contains those statements that came from DEFINITION blocks in the user's SFTRAN
program. In pass 2 , these two files are remerged; INCLUDE statements (which are
not translated in pass 1) are replaced by those statements that came from the
DEFINITION block of the same name. Another function of pass 2 is to append a list
of statement numbers to the ASSIGNED GOT0 statements generated in pass 1 at the
end of each PROCEDURE block.

-

34

Precompiler Subprograms

INOUT. - All statement input and output occurs in subroutine INOUT, which has
four entry points. Entry point INPUT is for input of both SFTRAN and FORTRAN
statements. Output of SFTRAN statements is by entry point S.FOUT; output of
FORTRAN statements is by entry point F40UT; output of error statements is by
entry point ERROUT. Statement line numbers, concatenation of input lines in the
case of multiline statements, and hyphenation and generation of continuation lines
on output are taken care of in INOUT. In this way, system-dependent details are
confined to one subprogram.

SCAN. - The statement scanning functions FIND and LOCATE are done in
logical-function subprogram SCAN. FIND' tests whether or not a given string next
occurs in the current statement. LOCATE searches the current statement, starting
with the current character, for a specified character. SCAN is also an entry point
name; this entry causes scanning to begin (or resume) at a particular byte (card
column) of the current statement.

An important part of SCAN is a test to see if there are any more nonblank char-
acters in the current statement beyond the current string. This test is performed
at each call to SCAN and whenever a successful call to FIND or LOCATE occurs. If
more characters are found, the position and value of the first one are obtained; if
only blank characters (spaces) remain, these are eliminated by a reduction of the
statement-length count.

NCODE and DCODE . - Subprograms NCODE and DCODE convert internal integer
numbers to digit strings, and conversely. When a character string is decoded, the.
value of logical function DCODE is .FALSE. if any decoding errors were en-
countered. (One of the uses of DCODE is to determine whether or not a string of
characters represents a literal integer constant .)

ERROR. - Subroutine ERROR has two entry points; ERROR, for nonfatal error
messages, and HALT, for fatal error messages. In this subroutine, the error
message is received in the argument string as a parenthetical expression. These
parentheses are located and the error message is extracted and appended to
ERROR, or *FATAL ERROR*, as the case may be. This complete message 'is then
announced, together with the current SFTRAN statement responsible for the
message, by calls to ERROUT.

35

PARENS. - Logical-function subprogram PARENS scans a string to see if a
complete parenthetical expression begins at a specified byte (or is preceded by
only blank characters). If left and right parentheses are found, their byte posi-
tions are returned.

ADDBUF . - Subroutine ADDBUF adds a string of characters to the output buffer
used for generating FORTRAN statements and increments the count of the total
number of characters in the buffer.

Character-Manipulating Routines

Three character-manipulating subprograms, which are not part of the FORTRAN
library, are used in the SFTRAN precompiler. These are system-supplied,
assembler-language routines that give SFTRAN and FORTRAN programs access to
the powerful IBM 360/67 machine instructions MVC (move characters), CLC
(compare logical characters), and TRT (translate and test). These subroutines

are contained in the system-supplied module CHCF4C.
F4MVC (A ,I ,B , J ,N) . - Subroutine F4MVC moves N characters from string A to

string B , starting with the Ith character of A, which replaces the Jth character of
B . (I , J , and N must all be greater than zero .)

acters of string A with N characters of string B , starting with the Ith character of
A, which is compared to the Jth character of B , etc .(I, J , and N must all be
greater than zero .) A .TRUE. value is returned only when a match is obtained for
all N characters.

F4CLC (A ,I, B , J ,N) . - Logical-function subprogram F4CLC compares N char-

F4TRT (A, I, J , T , K , C , L) . - Logical-function subprogram F4TRT tests and trans-
lates characters from string A, using translation table T . Processing starts with
the I character of A and ends with completion of the Jth character of A or when
a translation for the current character is found in the table. A .TRUE. value is
returned if a translation is found. In that case, the index of the translated char-
acter is returned in K , the character resulting from the translation is returned in
C (as a 1-byte variable), and its number value is returned in L (as an integer).
The F4TRT function is used only in subprogram SCAN and there only for locating

th

36

the next nonblank character in the current statement. For this purpose, the trans-
lation table consists of the complete character set, less the space character (hexa-
decimal 40), with no change of character codes.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 27, 1977,
505-01.

37

APPENDIX A

SUMMARY OF TASK-MANAGEMENT COMMANDS

In summarizing the task-management commands, notation similar to that of
reference 1 is used: command names, keywords, and formal operands are in upper

case and functional operands are in lower case. Also, several metasymbols are
used:

1 1 delimits optional operand fields
{I delimits operand alternatives

I separates operand alternatives
... indicates that the preceding field may be repeated (up to 9 times)

Command Onerands

E D I T L I B

E R A S E L I B

F O R T R A N

J O B

L I S T I N G S

P R I N T L I B

R E D I T L I B

S F T R A N

S T O E E

member name

member name E, . ..]
member name [, . . . 3
[, L I S T I N G = { Y I N)] [, L I N E S = (Y I N) 3

[{job namel?) 1
[, F O R T R A N = (Y I N) 3 [, L I S T I N G = (Y J N)] [, L I N E S = (Y I N) 7
[, N U M B E R = (Y I N)] [, S T R I P = {Y N) 3 [, O F F L I N E = { Y I N) 3

member name [,... 3
1, L I N E S = (Y I N) 3

member name [, . . . 3
[,LINES= [Y I N))

memker name [, $ O P T I O N S = * R E D I T command s t r i n g ' 3
member name [, . .. 3
[, P C R T R A N = (Y I N)] [, L I S T I N G = (Y I N) 3 [, L I N E S = (Y I N) 3
[, N U M B E R = [Y (N)] [, S T R I P = (Y I N)] [, O P F L I N E = (Y I N)]
[, t S F T R E C L = s o u r c e = ~ c o d e l i n e l e n g t h]

member name [, ... 3
I: I ERASE= [Y I N) 3

38

UNSTOEE

$INCLUDE

3STAME

member name [,..- 3

member name [,...]
member name

'These commands are not intended for direct user use.

39

APPENDIX B

SAMPLE RUNSTREAM

The following runstream is an example of how the SFTRAN system is used at a
terminal. The usual LOGON procedure and the procedure described previously
for acquiring SFTRAN are assumed to have already been completed. User-
entered lines are displayed in lower case and system responses are displayed in
upper case.

job l earn - r e d l t l i b t r y l
L O A D I N G SOURCE. LEARN (T R Y A)
NEW DATA SET--DEFAULT F I L E N A M E SET
i n F u t
INPUT
c t h i s is m y f i r s t t r y a t s f t r a n p r o g r a m m i n g .

C
i n c l u d e (p r e l i m i n a I i e s)

do w i t h
read (5 , l , d o n e = e n d) s t r i n g
u n t i l (GOO€ . or. s t r i n g (1) . eq. b l a n k)
write (6,2) s t r i n g
e n d
stcp

C
1 fo rma t (1C,a4)
2 format (' y o u s a i d : ' , 1 0 a 4)

d e f i n i t i o r (p r e l i m i n a r i e s)
l o g i c a l dcne
d i m e n s i o n s t r i n g (l 8)
d a t a k l a n k /' '/
e n d
e n d

E D I T
f i l e
E D I T
p a u s e
TO C O N T I B U E E D I T I N G T Y P E : C C N E D I T
- s f t r a n t r y l
CHCl iW4CG TEEMINETED: STOP
- call t r y l $
1i3456

a t c ... x y z
Y O U SAIC: 123456

YOU SAIC: AEC m o o XYZ

40

I

C H C R W 4 O O T E R M I N A T E D : STOF

E033 P R I N T B S N = 1 7 5 9 , 100 L I N E S
- listings t r y 1

The indented listing of SFTRAN code produced by the last user command is as

follows:

SOURCE-LEARN (T R Y 1) 03/15/77 13:54:52 SFTRAN, V E R S I O N 3

C T H I S I S MY F I B S T T R Y AT SFTSAN P R C G R A M M I N G .

C
I N C L U D E (P R E L I M I N A B I E S)

D O W I T H
R E A C (5 , l , D O N E = E N D) S T R I N G

WRITE (6,2) S T R I N G
U N T I L (DONE 0 OR. S T R I N G (1) EQ. E L A B K)

EKD
STOP

C
1 FORMAT (l G A 4)
2 F O R M A T (' YOU S A I D : ', 1 9 A 4)

C E F I N I T I C N (P F E L I M I N A F I E S)
L O G I C A L D C N E
D I M E N S I O N S T R I N G (1 0)
D A T A B L A N K /' '/

E N D
END

41

APPENDIX C

SFTRAN EXAMPLES

The following listings are intended to illustrate the use of SFTRAN coding.
The first example is an indented SFTRAN program listing as produced by LISTINGS.
It contains all of the SFTRAN structures currently available and is in good "top-
down" form. Next is a portion of the same demonstration program as it would
appear when NUMBER=Y is specified. The last example is the FORTRAN code gen-
erated by the precompiler at the same time it produced the numbered SFTRAN

listing.
The numbered examples were produced with LINES=Y to illustrate the cor-

respondence between SFTRAN output and FORTRAN output numbering. Not shown
is the degree to which these correspond to the input data-set numbering. The
general rule can be stated quite simply: the SFTRAN precompiler makes every
effort to give output lines the same index numbers as input lines; when additional
output lines must be generated, their numbers are incremented by 1 (cf. lines
10800-10804 of the example FORTRAN listing). The result is that, although gen-
erally the programmer does not see his line numbers, if an error message refers
to some specific line number, 'he knows exactly where (in the input data set) it
can be found.

One exception to the rule just mentioned is found in lines that have been moved
as a result of the use of INCLUDE-DEFINITION statements. The starting line number
of a moved block of statements will be the line number of the INCLUDE statement
they replace.

42

I

SOURCE.SFTRAN (DEMO) 03/14/77 22:12:00 S F T R B H , V E Z S I O N 3

C. PROGRAH TO DEMONSTRATE SFTRAN CODING,

C T H I S FRCGRAM CALCULATES MOLECULAR WEIGHT FOR A
C GIVEN MOLECULAR FOEHULAo

INCLUDE (TYPE AND DATA STAT3MENTS)

EO WITH
D O (I N I T I A L I Z E FOR NEW FORMULA)
R E A D (1,100, DONE=END) FORMLA

DO UNTIL (ERROR .OR. TYPE.EQ.0)
UNTIL (DONE)

D O (I D E N T I F Y NEXT BYTE TO DETERMINE PROCESSING TYPE)
DO C A S E (T Y P E , 3)
CASE 1

CASE 2

CASE 3

END

EO (PROCESS NEW ELEMENT)

D O (E E G I N NEW RADICAL)

CO (END CURRENT RACICAL)

END
I F (.NOT. ERROR) THEN

I F (LEVEL. EQ.0) THEN

E L S Z

END

WRITE (2 ,200) MOLWT

W R I T E (2 , 2 0 1)

E N D
E N D
ST0 F

C.. . . . M A I N FROCEDURES:

PROCEDURE (IDENTIFY NEXT BYTE TO DETERMINE PROCESSING TYPE)
CO (GET NEXT BYTE FROPl FORMULA)
T Y F E = l
I F (BYTE. EC. LPAREN) TYPE=2
I F (BYTE. EQ. RPAREN) TYPE=3
I F (BYTE. E€. SPACE) TYPE=O
NEXT=NEXT+l

END

PROCECURE (PFOCESS NEW ELEMENT)
DO (ASSEMELE ELENENT SYMBOL)
D O (FIND FATCiIING ELEMENT I N TABLE)
I F (FOUND) THEN

DO (READ NUMBER OF ATCMS/RACICALS)

43

SOURCE.SFTEBN (DEMO) 03/14/77 22:12:O@ SFTRAN, VERSION 3

I F (LEVEL. EQ.0) THEN
MOLWT=I"ICLWT+FLOAT (N) *AT)JT (ATNO)

ELSE
i3ADW'I (L E V E L) =RADWT (LEVEL) +FLOAT (N) *ATWT (ATNO)

SND
END

E N D

FROCECURE (EEGIN NEW E A C I C A L)

I E (iEVEL.GT. L M A X) THEN
L E V E L = L E V E L + I

ERI iCE=. TRUE.
WRITE (2,202)

E L S E

ENC
E A ~ W T (L E V E L) =O.C

E N D

F R O C E C U R E (EFT: CUFF.ENT R A C I C A L)
L E V E L = L E V E L - I
I F (Z E V E L - G E - C) T 5 E N

DO IREAC NUMEEli OF ATCMS/LJ.CICALS)
I F (LEVEL, GT.0) THEN

RADWT (LEVEL) =RADWT (LEVEL) +FLOAT (N) *RADWT (L E V E L + l)
E L S E

MOLWT=MOLWT+FLCAT (N) *EACWT (1)
END

ERBOB=.TRUE.
WRITE (2,203)

E L S E

EN C
END

C.,.,.MORE D E T A I L S :

FROCECURE (I N I T I A L I Z E F O B NEW FOEMULA)
MOLWT=O.O
LEVEL=O
NEXT=l
ERROR=. FALSE.

END

FROCEDURE (ASSEMBLE ELEMENT SYMBOL)
DO (PUT FIRST EYTE I N T C SYMEOL)
DO (GET NEXT BYTE FEOM FOEMULA)
I F (BYTE. GE. S MALLA AND. EYTE. LE. SMALLZ) THEN

NEXT=NEXT+l

BYTE=SPACE
ELSE

END
DO (PUT SECOND BYTE INTO SYMBOL)

44

SOiJRCE.SPTEAN(DEM0) 03/14/77 22:12:00 SFTRAN, VERSION 3

END

PROCECURE (FIND MATCHING ELEMENT I N TABLE)
DO FOR ATNO=l,NELEMS

<--IF (FOUND) EXIT (ATNO)
OTHERWISE

FOUND=SYMBOLo EQo ELEMNT (ATNO)

ERROR=.IRUE.
W R I T E (2 , 2 0 4) SYMBOL

EN C
END

FROCECURX (READ NUMBEX O F ATCMS/EBDICBLS)
N = 0
DO WITH

DO (G E T NEXT BYTE FRCM FORMULA)

N=lO*N+ (BYTE-ZEEO)
NEXT=NEXP+l

WHILE (BYTE. GE. Z E R O ANC. EYTE. LE. NINE)

EN C
N = H A X O (N , l)

END

C. . rn NOTE -- F 4 M V C (A , I , B , J , N) I S A N EXTERNAL SUBROUTINE WHICH MOVES
C N CHARACTERS FROM S T E I N G A TO S T R I N G B, STARTING WITH
C THE I-TH E.YTE O F A WHICH REPLACES THE J -TR BYTE OF 9.

FROCEDURE (G E T NEXT BYTE FRCM FOEMULA)
CALL F4MVC (FORMLA,NEXT,BYTE,4,1)

E N D

PROCEDURE (PUT FIRST EYTE INTO SYMEOL)

END
C A f L F4MVC (BYTE,4 ,SYMBBE,1 ,1)

PROCEDURE (PUT SECOND EYTE INTC SYMBOL)

E N D
CALL F4MVC (EYTE,4,SYMEOL,2,1)

C.....MISCELLANEOUS:

100 FORMAT (1 9 A 4 , A l)
200 FORMAT (I MOlECULAR WEIGHT = ' ,F10.3)
2 0 1 FORMAT (' ERROR: PARENTHESES DC NCT MATCH')
2C.2 FORMAT (' ERROR: TOO M A N Y NESTED RADICALS ')
203 FORMAT (' EREOE: TOO M A N Y RIGHT PARENTHESES')
2 0 4 FORMAT (' ERRCR: UNKNCWN ELEMENT = ,A2)

D E F I N I T I O N (TYPE A N D DATA STATEMENTS)
I M F L I C I T I N T E G E R (A - 2)
PEAL ATWT, MOLWT ,RADWT

45

*

* *
*
*
*
* *
*
*
* * *
It * * * * *

E N D

E N D

SOURCE.SPTRAN (DEMO) 03/14/75 22:12:@0 SPTRAN, V S X S I O N 3

L O G I C A L DONE,EFEOR,FOUND
DIMEHSIGN ATWT (1 1 0) ,ELEMNT (110) ,FORMLA(20) , R A D W T (1 0)

D A T A L M A X , N E L E M S , F O R M L A , S Y n E O L / 1 ~ , 2 ~ , 2 1 ~ ' '/
D A T A E L E M N T (1 ,

ELEMNT(2) ,
E L E M N T (\) 8

ELEMNT (4),
E L E M N E (5) #

ELEMNT (6) 8

ELEMN'I (7) ,
E L E M K T (8) ,
ELEHNT (9) 8

ELEMNT (1 0) ,
D A T A ELEMNT (11) ,

ELEMNT('I2) 8

ELEMNT (1 4) ,
ELEMNT (1 5) ,
ELEMHT (1 6) ,
ELEMNT (1 7) #

ELEMNT (I 8) 8

ELEMNT (1 9) #

ELEMNT(13)

ELEMN'I(20),

ATWT
A TWT
AT WT
ATWT
ATWT
AT WT
ATFJT
ATWT
AT WT
ATWT
AT WT
ATWT
AT WT
ATWT
ATWT
AT WT
ATUT
ATWT
ATWT
ATWT

1 . 0 0 7 9 7 / I

4 .0026 / #

6 , 9 3 9 / #

9 , 0 1 2 2 /,
1 0 . 8 1 1 /,
1 4 . 0 0 6 7 /,
18 .5984 /,
2 0 , 1 8 3 /
22.9898 /,
2 6 . 9 8 1 5 /,
28.086 /,

72 .01115 / I

1 5 . 9 9 9 4 /,

24 .312 /,

30 .9738 / I

32.064 / I

3 5 . 4 5 3 / *
39 .948 /,
39.702 /,
40.08 /

46

A part of SFTRAN listing of DEMO produced with NUMBER=Y is as follows:

0008700 C,... . MORE CETAILS:
00088CO
0008900 30002 PROCEDURE (I N I T I A L I Z E FOR NEW FORMULA)
0689060 38002 MOLWT=O.O
0009100 LEVEL=O
0009200 NEXT=l
0009300 ERBOR=.FALSE.
00094CO 10008 END
0009500
00096C.C 3G008 PROCEDURE (ASSEIBLE ELEflEIT SYMBOL)
0009700 30008 DO (PUT FIRST BYTE INTO SYMBOL)
OG098013 20037 DO (GET NEXT BYTE FROM FOEIULA)
0009900 20038 I F (BYTE. GE. SMAELA - A N D . BYTI3.I.E. SMALLZ) THEN
OGl 0000 NEXT=NEXT+l
0010100 20039 ELSE
OG10200 200-39 BYTE=SFACE
0010300 20040 EN C
0010400 26040 DO (PUT SECOND BYTE INTC SYMBOL)
0010500 20041 E N D
(501 06CO
0010700 30009 PROCEDURE (FIND HATCHING ELEMENT I N TABLE)
0010800 30c09 DC F O R ATNO=l ,NELEMS
0010900 20043 FOUND=SYMBOL,EQ.ELEMNT (ATNO)
0011000 10009 <--IF (FOUND) .EXIT (ATNO)
0011100 20044 OTHERWISE
001 1200 20044 ERAOR=, TRUE,
0011300 WRITE (2,204) SYMBOL
OG1148O 20042 END
0011500 20045 E N D
001 1600
0011700 30010 PROCEDURE (READ NUMBER OF ATOIYS/RADIC!iLS)
0011800 30010 N=O
001 1900 20046 DO WITH
oa12oco 20046 DO (GET NEXT BYTE FROM PCRMULA)
0012100 20048 WHILE (BYTE.GE.ZER0 . A N D , BYTE.LE.NINE)
6812200 N=lO*N+ (BYTE-ZERO)
0012300 NEXT=NEXT*l
C012400 10010 END
0012500 20047 N=MAXO (N, 1)
0012600 10011 END

47

I

A part of the FORTRAN code produced from DEMO with NUMBER=Y is as follows:

00087GO Co...oMORE DETAILS:
0008808
8008960 C FROCEDURE (I N I T I A L I Z E F O R NEW FOAMULA)
0009OGO 30002 MOLPT=O.O
0009100 LEVEL=O
0009200 NEXT=1
0009300 ERROR=. FALSE.
0009400 10008 GO TO N P R O O z 8 (20003)
0009500
0009600 C PROCEDURE (ASSEHBLE ELEMENT SYMBOL)
0009700 3C008 ASSIGN 20037 TO NPRO11
0009701 GO TO 30011
0009800 20037 ASSIGN 28038 TO NPR007
OGO9801 GO TO 30007
OGO99OO 20038 IF (.NOT. (BYTE. GEo SMALLA AND. BYTE. LE. SHALLZ)) GO TO 20039
001 0000 NEXT=NEXT+l
0010100 GO TO 20040
0010200 20039 EYTE=SPACE
0010400 2004C ASSIGN 20041 TO NPROl2
0010401 GO TO 30012
0010500 20041 GO TC NPBOO8, (20023)
001 0600
0010700 C FROCEDURE (FIND MATCHING ELEMENT I N TABLE)
0010800 30009 ATNO=l
0610801 N20042=NELEMS
0010802 GO TO 20043
00108G3 20042 A T N O = A I N O + l
0010804 I F ((N20042-ATNO) .LT.O) GO TO 20044
G01G980 20043 FOUND=SYMEOL. EQ. ELEMNT (A T N O)
0011000 10009 IF (F O U N D) G O TO 20045
0011100 GO TO 20042
0011200 20044 ERROR=.TRUE.
001 1360 'WRITE (2,204) SYMBOL
0011500 20045 GO TO NPR009, (20024)
001 1600
0011700 C FROCEEURE (R E A D NUMBER OF ATCMS/RADICALS)
0611880 30610 N=O
0012000 20046 ASSIGN 20048 TO NPR007
0012081 GO TO 30007
0012100 20048 IF (.NOT.(BYTE.GE.ZERO . A N D . BYTE.LE.NINE)) GO TO 20047
001 2200 N = l O * N + (BYTE-ZERO)
0012300 NEXT=NEXT+l
0012400 10010 GO TO 20046
0012500 20047 N = H A X O (N , 1)
OG12600 10011 GO TO NPRO10, (20027,20034)

48

REFERENCE

1. IBM Time Sharing System Command System User's Guide. IBM Corp . Reference

Manual GC28-2001, 10th e d . , Aug. 1976.

49

-
1. Report No.

""

I I 2 . Government Accession No. 3. Reciplent's Catalog No.

NASA TP-1006
4. Tltle and Subtitle 5. Report Date

October 1977
Performing Organlzatlon Code USER'S GUIDE FOR SFTRAN/360 "

7. Author(s1 ~ 1 8. Performing OrganIration Report No

Theodore E . Fessler and William F. F o r d
. "~ ~ -

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

~~ ~- - . .

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20546

- ". . .

505-01

-
15 Supplementary Notes

"

16. Abstract
.~

Extensions and improvements have been made to SFTRAN, a s t ruc tured-programming
language. This improved language has been implemented as a precompiler that t ranslates
from SFTRAN to FORTRAN and has been available to users of the Lewis Research Center ' s
D M 360/67 Time-sharing System for the past year. This report describes the SFTRAN
language and its use. Time-sharing System (TSS) command procedures have been implemented
that eliminate the complications of dealing with extra files and processing steps which the use
of a precompiler would otherwise require . These command procedures are descr ibed and
the i r use is i l lustrated by examples .

7. Key Words (Suggested by Authork) I

Structured programming; Precompilers ;
Task management systems

18. Dlstrlbutlon Statement

Unclassified - unlimited
STAR Category 61

1

19. Security Classif. (of this report) 20. Securlty Classlf. (o f thls page) 1 21. NO ofOPages

Unclassified Unclassified
~~

' For sale by the Nat lonal Techn lca l In format ion Serv ice Sprlnefleld. Vlrgllil.1 22161

NASA-Langley, 1977

National Aeronautics and
Space Administration

Washington, D.C.
20546
Official Business
Penalty for Private Use, $300

THIRD-CLASS BULK RATE Postage and Fees Paid
National Aeronautics and
Space Administration
NASA451

12 1 lU,G, 100777 S00903DS i DEPT OF THE A I R FORCE
AF g J E A P O N S LABORATORY I.

ATTN: TECHNICAL L I B R A R Y {SUL) 1;
K I B T L A N D APB NH 87117 I 1 -

I

pOSTMMTER: If Undeliverable (Section 158
Postal Manual) Do Not Return

